Spark Architecture

A.Grishchenko

|||||||||||||||||||||||||||||||||||

About me

Enterprise Architect @ Pivotal
e 7 years in data processing

* 5 years with MPP

* 4 years with Hadoop

e Spark contributor

e http://Ox0fff.com

Outline

e Spark Motivation

e Spark Pillars

e Spark Architecture
e Spark Shuffle

e Spark DataFrame

Outline

e Spark Motivation
e Spark Pillars

e Spark Architecture
e Spark Shuffle

e Spark DataFrame

Spark Motivation

e Difficultly of programming directly in Hadoop MapReduce

Spark Motivation

e Difficultly of programming directly in Hadoop MapReduce

* Performance bottlenecks, or batch not fitting use cases

Spark Motivation

e Difficultly of programming directly in Hadoop MapReduce
* Performance bottlenecks, or batch not fitting use cases

e Better support iterative jobs typical for machine learning

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;

| | [] |] |]
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce. lib. input.FileInputFormat;
import org.apache.hadoop.mapreduce. lib.output.FileOutputFormat;

public class WordCount {

] L]
Word Count implementations
extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

- - public void map(Object key, Text value, Context context
. a OO — I | IeS I ava) throws IOException, InterruptedException {
l l StringTokenizer itr = new StringTokenizer(value.toString());

while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}

e Spark — 1 line in interactive shell }

public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();

sc.textFile('...').flatMap(lambda x: x.split()) T

context.write(key, result);
.map (lambda x: (x, 1)) .reduceByKey(lambda x, y: x+y) \/E; v’

public static void main(String[] args) throws Exception {
) SaVeASTextFlle (v . v) Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[e]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? @ : 1);

Performance Bottlenecks

How many times the data is put to the HDD during a single
MapReduce Job?

e One

e Two

e Three

 More

Performance Bottlenecks

How many times the data is put to the HDD during a single
MapReduce Job?

Performance Bottlenecks

Consider Hive as main SQL tool

Performance Bottlenecks

Consider Hive as main SQL tool
* Typical Hive query is translated to 3-5 MR jobs

Performance Bottlenecks

Consider Hive as main SQL tool
* Typical Hive query is translated to 3-5 MR jobs

e Each MR would scan put data to HDD 3+ times

Performance Bottlenecks

Consider Hive as main SQL tool

* Typical Hive query is translated to 3-5 MR jobs
e Each MR would scan put data to HDD 3+ times
e Each put to HDD — write followed by read

Performance Bottlenecks

Consider Hive as main SQL tool
* Typical Hive query is translated to 3-5 MR jobs

e Each MR would scan put data to HDD 3+ times
e Each put to HDD — write followed by read

e Sums up to 18-30 scans of data during a single
Hive query

Performance Bottlenecks

Spark offers you

 Lazy Computations
— Optimize the job before executing

Performance Bottlenecks

Spark offers you

 Lazy Computations
— Optimize the job before executing

* In-memory data caching
— Scan HDD only once, then scan your RAM

Performance Bottlenecks

Spark offers you

 Lazy Computations
— Optimize the job before executing

* In-memory data caching
— Scan HDD only once, then scan your RAM
e Efficient pipelining
— Avoids the data hitting the HDD by all means

Outline

 Spark Pillars
e Spark Architecture
e Spark Shuffle

e Spark DataFrame

Spark Pillars

Two main abstractions of Spark

Spark Pillars

Two main abstractions of Spark

e RDD — Resilient Distributed Dataset

Spark Pillars

Two main abstractions of Spark
e RDD - Resilient Distributed Dataset

e DAG - Direct Acyclic Graph

RDD

e Simple view
— RDD is collection of data items split into partitions and
stored in memory on worker nodes of the cluster

RDD

e Simple view
— RDD is collection of data items split into partitions and
stored in memory on worker nodes of the cluster

e Complex view
— RDD is an interface for data transformation

RDD

e Simple view
— RDD is collection of data items split into partitions and
stored in memory on worker nodes of the cluster

e Complex view
— RDD is an interface for data transformation

— RDD refers to the data stored either in persisted store
(HDFS, Cassandra, HBase, etc.) or in cache (memory,
memory+disks, disk only, etc.) or in another RDD

RDD

e Complex view (cont'd)
— Partitions are recomputed on failure or cache eviction

RDD

e Complex view (cont'd)
— Partitions are recomputed on failure or cache eviction

— Metadata stored for interface
Partitions — set of data splits associated with this RDD

RDD

e Complex view (cont'd)
— Partitions are recomputed on failure or cache eviction
— Metadata stored for interface

= Partitions — set of data splits associated with this RDD
= Dependencies — list of parent RDDs involved in computation

RDD

e Complex view (cont'd)
— Partitions are recomputed on failure or cache eviction

— Metadata stored for interface
= Partitions — set of data splits associated with this RDD
= Dependencies — list of parent RDDs involved in computation

= Compute — function to compute partition of the RDD given the
parent partitions from the Dependencies

RDD

e Complex view (cont'd)
— Partitions are recomputed on failure or cache eviction
— Metadata stored for interface

Partitions — set of data splits associated with this RDD
Dependencies — list of parent RDDs involved in computation
Compute — function to compute partition of the RDD given the
parent partitions from the Dependencies

Preferred Locations — where is the best place to put
computations on this partition (data locality)

RDD

e Complex view (cont'd)
— Partitions are recomputed on failure or cache eviction

— Metadata stored for interface
= Partitions — set of data splits associated with this RDD
= Dependencies — list of parent RDDs involved in computation

= Compute — function to compute partition of the RDD given the
parent partitions from the Dependencies

= Preferred Locations — where is the best place to put
computations on this partition (data locality)

= Partitioner — how the data is split into partitions

RDD

 RDD is the main and only tool for data
manipulation in Spark

 Two classes of operations
— Transformations
— Actions

RDD

Lazy computations model

Transformation cause only metadata change

DAG

Direct Acyclic Graph — sequence of computations
performed on data

DAG

Direct Acyclic Graph — sequence of computations
performed on data

* Node — RDD partition

DAG

Direct Acyclic Graph — sequence of computations
performed on data
* Node — RDD partition

 Edge — transformation on top of data

DAG

Direct Acyclic Graph — sequence of computations
performed on data

* Node — RDD partition

 Edge — transformation on top of data

e Acyclic — graph cannot return to the older partition

DAG

Direct Acyclic Graph — sequence of computations
performed on data

* Node — RDD partition

 Edge — transformation on top of data

e Acyclic — graph cannot return to the older partition

e Direct — transformation is an action that transitions
data partition state (from Ato B)

DAG
WordCount example

def printfunc (X):
print 'Word "%s" occurs %d times' % (x[0], x[1])

infile = sc.textFile('hdfs://sparkdemo:8020/sparkdemo/textfiles/README.md"', 4)
rddl = infile.flatMap(lambda x: xX.split())

rdd2 = rddl.map(lambda xXx: (X, 1)) .reduceByKey(lambda x, Vv: X+V)

print rdd2.toDebugString()

rdd2 . foreach(printfunc)

DAG

WordCount example

sc.textFile(‘hdfs://...") flatMap map reduceByKey foreach

HDFS RDD RDD RDD RDD RDD

HDFS Input Splits

Outline

e Spark Motivation

e Spark Pillars

e Spark Architecture
e Spark Shuffle

e Spark DataFrames

Spark Cluster

Spark Cluster

Spark Cluster

Spark Cluster

Spark Cluster

* Driver
— Entry point of the Spark Shell (Scala, Python, R)

Spark Cluster

* Driver
— Entry point of the Spark Shell (Scala, Python, R)
— The place where SparkContext is created

Spark Cluster

* Driver
— Entry point of the Spark Shell (Scala, Python, R)
— The place where SparkContext is created
— Translates RDD into the execution graph

Spark Cluster

* Driver
— Entry point of the Spark Shell (Scala, Python, R)
— The place where SparkContext is created
— Translates RDD into the execution graph
— Splits graph into stages

Spark Cluster

* Driver
— Entry point of the Spark Shell (Scala, Python, R)
— The place where SparkContext is created
— Translates RDD into the execution graph
— Splits graph into stages
— Schedules tasks and controls their execution

Spark Cluster

* Driver
— Entry point of the Spark Shell (Scala, Python, R)
— The place where SparkContext is created
— Translates RDD into the execution graph
— Splits graph into stages
— Schedules tasks and controls their execution
— Stores metadata about all the RDDs and their partitions

Spark Cluster

Driver

— Entry point of the Spark Shell (Scala, Python, R)

— The place where SparkContext is created

— Translates RDD into the execution graph

— Splits graph into stages

— Schedules tasks and controls their execution

— Stores metadata about all the RDDs and their partitions
— Brings up Spark WebUI with job information

Spark Cluster

 Executor
— Stores the data in cache in JVM heap or on HDDs

Spark Cluster

e Executor
— Stores the data in cache in JVM heap or on HDDs
— Reads data from external sources

Spark Cluster

 Executor
— Stores the data in cache in JVM heap or on HDDs
— Reads data from external sources
— Writes data to external sources

Spark Cluster

 Executor
— Stores the data in cache in JVM heap or on HDDs
— Reads data from external sources
— Writes data to external sources
— Performs all the data processing

Executor Memory

Storage
(60% of Safe)

Shuffle
(20% of Safe)
spark.shuffle. memoryFraction

Safe
(90% of Heap)
spark_storage.safelyFraction
JVM Heap
(512MB)
Spark. executor. memory

Spark Cluster — Detailed

Spark Cluster — PySpark

Client Node

Driver JVM

Worker Monitor for Python

Controls spark dfver memory RAM

Worker Node 1

Worker Node N

Node Memory Pool
Executor JVM #M-1 Executor JVM #M
Worker Monitor | Worker Monitor Worker Monitor | Worker Monitor
for Python #1 for Python#2 | ™ for Python #1 for Python #2 |

Node Memory Pool
Executor JVM #1 Executor JVM #2
Worker Monitor | Worker Monitor Worker Monitor | Worker Monitor
for Python #1 for Python#2 | ™ for Python #1 for Python#2 | ™
spark executor.cores cores and Controls spark executor.cores cores and
Spavk executor memory ‘spark executon memovy

|

spark execulor cores cores and
spack executor. memory RAM

cores and

Spark executor memory

1

|

Application Decomposition

 Application
— Single instance of SparkContext that stores some data

processing logic and can schedule series of jobs,
sequentially or in parallel (SparkContext is thread-safe)

Application Decomposition

 Application
— Single instance of SparkContext that stores some data

processing logic and can schedule series of jobs,
sequentially or in parallel (SparkContext is thread-safe)

e Job

— Complete set of transformations on RDD that finishes

with action or data saving, triggered by the driver
application

Application Decomposition

e Stage
— Set of transformations that can be pipelined and
executed by a single independent worker. Usually it is
app the transformations between “read”, “shuffle”,

“action”, “save”

Application Decomposition

e Stage
— Set of transformations that can be pipelined and
executed by a single independent worker. Usually it is

app the transformations between “read”, “shuffle”,
“action”,

. ‘save”
e Task

— Execution of the stage on a single data partition. Basic
unit of scheduling

WordCount Example

sc.textFile(‘hdfs://...") flatMap map reduceByKey foreach

HDFS RDD RDD RDD RDD RDD

<7

NN

£

HDFS Input Splits

RDD Partitions

WordCount Example

reduceByKey foreach
ey S /g, i e

RDD RDD

SLSC

—

HDFS Input Splits

WordCount Example

foreach

Fm e e e e e e e e e e e e e e ———— —

reduceByKey

map

) flatMap

sc.textFile(‘hdfs://...

r

RDD

RDD

!

J \ A \
suonied ddd

s)I|ds nduj S4aH

. ..

WordCount Example

sc.textFile(‘hdfs://...") flatMap

reduceByKey

foreach

WordCount Example

sc.textFile(‘hdfs://...") flatMap map reduceByKey foreach

WordCount Example

pipeline
e

partition

pipeline

. ..

Persistence in Spark

Persistence Level Description

MEMORY_ONLY Store RDD as deserialized Java objects in the JVM. If the RDD does not fit in
memory, some partitions will not be cached and will be recomputed on the fly each

time they're needed. This is the default level.

MEMORY_AND_DISK Store RDD as deserialized Java objects in the JVM. If the RDD does not fit in
memory, store the partitions that don't fit on disk, and read them from there when

they're needed.

MEMORY_ONLY_SER Store RDD as serialized Java objects (one byte array per partition). This is
generally more space-efficient than deserialized objects, especially when using a
fast serializer, but more CPU-intensive to read.

MEMORY_AND_DISK_SER Similar to MEMORY_ONLY_SER, but spill partitions that don't fit in memory to disk
instead of recomputing them on the fly each time they're needed.

DISK_ONLY Store the RDD partitions only on disk.

MEMORY_ONLY 2, Same as the levels above, but replicate each partition on two cluster nodes.
DISK_ONLY 2, etc.

Persistence in Spark

e Spark considers memory as a cache with LRU
eviction rules

e [f“Disk” is involved, data is evicted to disks

rdd = sc.parallelize(xrange (1000))
rdd.cache () .count ()
rdd.persist (StorageLevel .MEMORY AND DISK SER) .count ()

rdd.unpersist ()

Outline

e Spark Motivation

e Spark Pillars

e Spark Architecture
e Spark Shuffle

e Spark DataFrame

Shuffles in Spark
 Hash Shuffle — default prior to 1.2.0

Shuffles in Spark

 Hash Shuffle — default prior to 1.2.0
e Sort Shuffle — default now

Shuffles in Spark

 Hash Shuffle — default prior to 1.2.0
e Sort Shuffle — default now
* Tungsten Sort — new optimized one!

Hash Shuffle

Hash Shuffle

uonied
uonied
uonied
uonied
uoniJed

uoniped

uoniJed
uoniued

Hash Shuffle

uoniJed
uoniped
uoniJed

uoniped

uoniJed
uoniJed
uoniJed
uoniJed

w:ao.v_m_ﬁ.v_._maw
/ $8109°10)}noaxa yieds

Hash Shuffle

Local Directory

Executor JVM

spark.local.dir

Slaonpay,
JO JaquinN

Output File
Output File

uoniued
uonied
uoniued
uonied
uoniued
uoniued
uoniued
uoniued

@
L
e
>
o
)
i
@

“map” task
“map” task

w:ao.v_m.ﬂ.v_gmaw
/ S$8102°J0}ndaxa yleds

Hash Shuffle

Local Directory

Executor JVM

spark.local.dir

Jojnoaxa siy) Aq pajnoaxa
syse} . dew, JO JaquinN

Slaonpay,
JO JaquinN

A

SJaonpay,
JO JaquinN

Output File
Output File

uoniued
uonied
uoniued
uonied
uoniued
uoniued
uoniued
uoniued

[

@ o o <@
T Ty g L
[l +— I — | — R
4 OB S f O S
lplpplp
+— I = B
-} o8 S >
@) o) NO O

X

(7))

@

]

o

(qv]

£

A

w:ao.v_w.ﬂ.v_gmaw
/ S$8102°J0}ndaxa yleds

Hash Shuffle with Consolidation

Hash Shuffle With Consolidation

uoniJed
uoniped
uoniJed

uoniped

uoniJed
uoniJed
uoniJed
uoniJed

Hash Shuffle With Consolidation

spark.executor.cores /

spark.talsk.cpus

Partition
Partition

Executor JVM
(- (e (e (e
o o o o
= B B B=
() Q) () Q)
Ao o o o

L “map” task

Local Directory

spark.local.dir

Output File

Partition

Number of

Partition
“Reducers”

Output File

Output File §

Hash Shuffle With Consolidation

Executor JVM

spark.executor.cores /

spark.talsk.cpus

Partition

Partition
Partition

Partition

Partition
Partition

Partition

Partition

Number of
“Reducers”

Local Directory

spark.local.dir

Output File

Output File
Output File |
Output File i

/ Output File

—

—>

Number of
“Reducers”

Output File |

spark.executor.cores /
spark.task.cpus

Hash Shuffle With Consolidation

Local Directory

Executor JVM

spark.local.dir

sndo-yseyyeds
/ $8109°10}ndaxa yleds

SJ190Np3Yy,,

JO JaquinN

Slaonpay,
Jo JaquinN

o9
e e
— f =
>)
O O
“— l =
) -
O} NO)

uoniued
uonied
uoniued
uonied
uoniued
uoniued
uoniued
uoniued

Q@
L
-
)
o
-
)
@

Output File
Output File
mEd Output File

“map” task

w:ao.v_w.ﬂ.v_gmaw
/ S$8102°J0}ndaxa yleds

Hash Shuffle With Consolidation

Executor JVM Local Directory

spark.local.dir

Output Hile
Output [File

Output Hiles g
Output File i
/ Output File
) “map” taSk — L I}
md Output File |

Partition
Partition
Partition
Partition
Partition
Partition
Partition
Partition

spark.executor.cores /
spark talsk cpus

Number of
“Reducers”

spark.executor.cores /
spark.task.cpus

Number of
“Reducers”

Hash Shuffle With Consolidation

Local Directory

Executor JVM

spark.local.dir

sndo-yseyyeds
/ $8109°10}ndaxa yleds

S190NP3Y,, SJI20NP3Y,,
JO JaqwinN JOo JaquinN
ool ol ool @
TIC@CECIClC
=1 = EEE
S E - EECE
- -) - -)
o) o) el KelKe] &
|
uoniued
|
|
uoped !
|
uoned |
S
|
uoned 1 o
g
uomped | s
|
voneqy —1
|
|
uoned |
|
uonued
|
|

w:ao.v_m.ﬂ.v:maw
/ S$8102°J0}ndaxa yleds

Hash Shuffle With Consolidation

Executor JVM Local Directory

spark.local.dir

Output Hile
Output [File

Output Hile |
Output File I
/> Output File
) “map” taSk — L I}
md Output File |

Partition
Partition
Partition
Partition
Partition
Partition
Partition
Partition

spark.executor.cores /
spark talsk cpus

Number of
“Reducers”

spark.executor.cores /
spark.task.cpus

Number of
“Reducers”

Sort Shuffle

Sort Shuffle

uonied
uoniJed
uonied
uoniJed

uoniued
uoniJed
uoniJed
uonied
uoniJed
uonied

Sort Shuffle

uonied
uoniJed
uonied
uoniJed

uoniued
uoniJed
uoniJed
uonied
uoniJed
uonied

sndoyseyyeds / s8100°10)ndaxa yleds

Sort Shuffle

uonied
uoniJed
uonied
uonied

uoniued
uonied
uonied
uoniued
uonied
uoniued

sndoyseyyeds / s8100°10)ndaxa yleds

Sort Shuffle

uonied
uoniJed
uonied
uonied

uoniued
uonied
uonied
uoniued
uonied
uoniued

sndoyseyyeds / s8100°10)ndaxa yleds

Sort Shuffle

Local
Directory

uonied
uoniued
uonied
uoniJed

uoniued
uonied
uonied
uoniued
uonied
uoniued

sndoyseyyeds / s8100°10)ndaxa yleds

Sort Shuffle

Local
Directory

uonied
uoniued
uonied
uoniJed
uoniued
uoniJed
uoniJed
uonied
uoniJed
uoniued

sndoyseyyeds / s8100°10)ndaxa yleds

Sort Shuffle

_______________________ Executor JVM
:r spark.storage.[safetyFraction * memoryFraction]

| C c c c C C c C c c
6 0 0o o o6 o o o o ©o
@ © © © © (© © © © ©
el o ol (ol (ol al o (ol o o

spark.shuffle.
[safetyFraction * memoryFraction]

AppendOnlyMap

spark.executor.cores / spark.task.cpus
\ 2
—
Q
-O=

__

e e e e e

Local
Directory

sort & ,7 Output File

spill -

. Output File
sort & / e

spill Output File
sort & /

spill

Sort Shuffle

_______________________ Executor JVM
E_ spark.storage.[safetyFraction * memoryFraction]

| C c c c C C c C c c
6 0 0o o o6 o o o o ©o
@ © © © © (© © © © ©
el o ol (ol (ol al o (ol o o

spark.shuffle.
[safetyFraction * memoryFraction]

AppendOnlyMap

spark.executor.cores / spark.task.cpus
\ 2
—
Q
-Oz

__

e e e e e

Local
Directory

MinHeap
Merge

Y

sort & ,7 Output File

spill | = |
e Output File I\'/?e":ggp
sort & / e
spil B - §>—>
P Output File N
sort &
spill

“reduce’” task

“reduce’” task

Tungsten Sort Shuffle

Tungsten Sort Shuffle

uoniJed
uonied
uonied
uoniJed
uonied
uonied
uonied
uonied
uonied
uoniued

Tungsten Sort Shuffle

uoniJed
uonied
uonied
uoniJed

uoniued
uoniued
uonied
uoniued
uoniued
uoniued

sndoyseyyeds / s8100°10)ndaxa yleds

Tungsten Sort Shuffle

uoniJed
uonied
uonied
uoniJed

uoniued
uoniued
uonied
uoniued
uoniued
uoniued

sndoyseyyeds / s8100°10)ndaxa yleds

Tungsten Sort Shuffle

uoniJed
uonied
uonied
uoniJed

uoniued
uoniued
uonied
uoniued
uoniued
uoniued

sndoyseyyeds / s8100°10)ndaxa yleds

Tungsten Sort Shuffle

Executor JVM Local Directory

=== == e e e e e e e e e e e e e mmmmmmmmmm e m - spark.local.dir

Output File

il ciclclcliclclclcllch ci§ partition
O o o o o @) o o o O |
R R R R e E e e e = partition
fFCEpEjgEgECEgERELIECRECEl B .
@ © (C © (© Q) © (© (© © P
AR o IR IR o IR o N o I o N o IR o IR o NN & BN partition
“““““““““““““ e
| [safetyFraction * memoryFraction] : Sort &
] . Array of data pointers and i spill
“map” —. Partition IDs, long[]
' Serialized Data
LinkedList<MemoryBlock>

spark.executor.cores / spark.task.cpus
O
7
43

Tungsten Sort Shuffle

spark.executor.cores / spark.task.cpus

__________ Executor JVM
E_ spark.storage.[safetyFraction * memoryFraction]
il clclclclclcllclcl c) c
9 © ©o o o o o o o 0O
CE £ T T £ £t £ £t t ¢t
. @© © © © © ® © ® © ©
SR o IR o IR o IR o N o IR o I o IR o IR o HRRRN 0 B
“““““““““““““ T aene,
| [safetyFraction * memoryFraction]
. Array of data pointers and
“‘map” —. Partition IDs, long[]
task Serialized Data

LinkedList<MemoryBlock>

Local Directory
spark.local.dir

: Output File
i partition
: partition
i partition
i partition
. Output File
i sort & partition
: Spill partition
. e partition
.:,& sort & partition
spill

=

Tungsten Sort Shuffle

Executor JVM

spark.executor.cores / spark.task.cpus

[safetyFraction * memoryFraction]

Array of data pointers and

Serialized Data

LinkedList<MemoryBlock>

(e
O
=
©
o
__________________ s akshuie
“map” — Partition IDs, long[] /

Local Directory
spark.local.dir

Output File
partition
partition
partition
partition

Output File
partition
partition
partition
partition

Tungsten Sort Shuffle

spark.executor.cores / spark.task.cpus

Executor JVM
spark.storage.[safetyFraction * memoryFraction]
C C C c (- c C C C
°c © © © o o o o 9
T £ £ £ £ £ £ £ T
© © © © ® © ® © ©
A O Ao O Ao Ao A o A
“““““““““ T aene,
| [safetyFraction * memoryFraction]
. Array of data pointers and
“map” 7 Partition IDs, long[]
task \:f Serialized Data
+ LinkedList<MemoryBlock>
U " Array of data pointers and
“map” / Partition IDs, long[]
task \):‘ Serialized Data

LinkedList<MemoryBlock>

Local Directory
spark.local.dir

Output File
partition
partition
partition
partition

Output File
partition
partition
partition
partition

sort &
spill

sort &
spill

=

Tungsten Sort Shuffle

spark.executor.cores / spark.task.cpus

LinkedList<MemoryBlock>

_______ Executor JVM

spark.storage.[safetyFraction * memoryFraction] i
c cf C c c c cfl C c |
S © © © o o o 9o 9,
T £ £ £ T £ T t Tt
© © © © ® © ® © © .
A Ao Ao O Ao Ao A o A
“““““““““ T e,
| [safetyFraction * memoryFraction] :
. Array of data pointers and i

“map” 7 Partition IDs, long[]
task \:f Serialized Data :
' LinkedList<MemoryBlock> |
U " Array of data pointers and i
“map” / Partition IDs, long[] i
task \):‘ Serialized Data i

Local Directory
spark.local.dir

Output File
partition
partition
partition

partition

Output File
partition
partition
partition
partition

Output File
partition
partition

partition
partition

Tungsten Sort Shuffle

spark.executor.cores / spark.task.cpus

Executor JVM Local Directory
=== == e e e e e e e e e e e e e mmmmmmmmmm e m - | spark.local.dir
: spark.storage.[safetyFraction * memoryFraction] : Output File :merge:
i S CC) g CC) CC) CC) S S S 8 i partition i Output File
R R R R e E e e e = partition
i ‘% % ‘% -C:B % 1(:5 -% % ‘% % i partition partition
jojojaojojaojojaoajojojal partition\¢
B T T e . Output File ’J
: [safetyFraction*memoryFraction]i partition A\ A partition
. Array of data pointers and T
L “map” /7:r Partition IDs, long|[] Eartition ‘r“i
task \:f Serialized Data : partition w ‘ "
'~ LinkedList<MemoryBlock> | . partition
- : S i Output File]f X
e . Array of data pointers and | partition ﬁ
“map” /i' Partition IDs, long] : partition) partition
| Serialized Data ! iti
task \:‘ LinkedList<MemoryBlock> i E:::::EE

Outline

e Spark Motivation

e Spark Pillars

e Spark Architecture
e Spark Shuffle

e Spark DataFrame

DataFrame ldea

language

frontend SQL Python Java/Scala R
DataFrame
Logical Plan

Tungsten 5
backend

DataFrame Implementation

* Interface
— DataFrame is an RDD with schema — field names, field
data types and statistics
— Unified transformation interface in all languages, all the
transformations are passed to JVM
— Can be accessed as RDD, in this case transformed to
the RDD of Row objects

DataFrame Implementation

Internals

Internally it is the same RDD

Data is stored in row-columnar format, row chunk size
IS set by spark.sql.inMemoryColumnarStorage.batchSize
Each column in each partition stores min-max values
for partition pruning

Allows better compression ratio than standard RDD
Delivers faster performance for small subsets of
columns

Questions?

Pivotal Confidential-Internal Use Only 113

[’1votal

BUILT FOR THE SPEED OF BUSINESS

