Spark Architecture A.Grishchenko **Pivotal** #### About me ## Enterprise Architect @ Pivotal - 7 years in data processing - 5 years with MPP - 4 years with Hadoop - Spark contributor - http://0x0fff.com ## **Outline** - Spark Motivation - Spark Pillars - Spark Architecture - Spark Shuffle - Spark DataFrame ### **Outline** - Spark Motivation - Spark Pillars - Spark Architecture - Spark Shuffle - Spark DataFrame ## **Spark Motivation** Difficultly of programming directly in Hadoop MapReduce ## **Spark Motivation** - Difficultly of programming directly in Hadoop MapReduce - Performance bottlenecks, or batch not fitting use cases ## **Spark Motivation** - Difficultly of programming directly in Hadoop MapReduce - Performance bottlenecks, or batch not fitting use cases - Better support iterative jobs typical for machine learning ## Difficulty of Programming in MR #### Word Count implementations - Hadoop MR 61 lines in Java - Spark 1 line in interactive shell ``` sc.textFile('...').flatMap(lambda x: x.split()) .map(lambda x: (x, 1)).reduceByKey(lambda x, y: x+y) .saveAsTextFile('...') ``` ``` import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path: import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job: import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCount { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1): private Text word = new Text(); public void map(Object key, Text value, Context context) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); public static class IntSumReducer extends Reducer<Text.IntWritable.Text.IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text kev. Iterable<IntWritable> values. Context context) throws IOException, InterruptedException { int sum = 0: for (IntWritable val : values) { sum += val.get(); result.set(sum); context.write(key, result); public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "word count"); job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class); iob.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job. new Path(args[1])): System.exit(job.waitForCompletion(true) ? 0 : 1); ``` How many times the data is put to the HDD during a single MapReduce Job? - One - Two - Three - More How many times the data is put to the HDD during a single MapReduce Job? - One - Two - √ Three - ✓ More Consider Hive as main SQL tool Typical Hive query is translated to 3-5 MR jobs - Typical Hive query is translated to 3-5 MR jobs - Each MR would scan put data to HDD 3+ times - Typical Hive query is translated to 3-5 MR jobs - Each MR would scan put data to HDD 3+ times - Each put to HDD write followed by read - Typical Hive query is translated to 3-5 MR jobs - Each MR would scan put data to HDD 3+ times - Each put to HDD write followed by read - Sums up to 18-30 scans of data during a single Hive query ## Spark offers you - Lazy Computations - Optimize the job before executing ## Spark offers you - Lazy Computations - Optimize the job before executing - In-memory data caching - Scan HDD only once, then scan your RAM ## Spark offers you - Lazy Computations - Optimize the job before executing - In-memory data caching - Scan HDD only once, then scan your RAM - Efficient pipelining - Avoids the data hitting the HDD by all means ### **Outline** - Spark Motivation - Spark Pillars - Spark Architecture - Spark Shuffle - Spark DataFrame ## Spark Pillars Two main abstractions of Spark ## Spark Pillars Two main abstractions of Spark RDD – Resilient Distributed Dataset ## Spark Pillars Two main abstractions of Spark - RDD Resilient Distributed Dataset - DAG Direct Acyclic Graph - Simple view - RDD is collection of data items split into partitions and stored in memory on worker nodes of the cluster - Simple view - RDD is collection of data items split into partitions and stored in memory on worker nodes of the cluster - Complex view - RDD is an interface for data transformation - Simple view - RDD is collection of data items split into partitions and stored in memory on worker nodes of the cluster - Complex view - RDD is an interface for data transformation - RDD refers to the data stored either in persisted store (HDFS, Cassandra, HBase, etc.) or in cache (memory, memory+disks, disk only, etc.) or in another RDD - Complex view (cont'd) - Partitions are recomputed on failure or cache eviction - Complex view (cont'd) - Partitions are recomputed on failure or cache eviction - Metadata stored for interface - Partitions set of data splits associated with this RDD - Complex view (cont'd) - Partitions are recomputed on failure or cache eviction - Metadata stored for interface - Partitions set of data splits associated with this RDD - Dependencies list of parent RDDs involved in computation - Complex view (cont'd) - Partitions are recomputed on failure or cache eviction - Metadata stored for interface - Partitions set of data splits associated with this RDD - Dependencies list of parent RDDs involved in computation - Compute function to compute partition of the RDD given the parent partitions from the Dependencies - Complex view (cont'd) - Partitions are recomputed on failure or cache eviction - Metadata stored for interface - Partitions set of data splits associated with this RDD - Dependencies list of parent RDDs involved in computation - Compute function to compute partition of the RDD given the parent partitions from the Dependencies - Preferred Locations where is the best place to put computations on this partition (data locality) - Complex view (cont'd) - Partitions are recomputed on failure or cache eviction - Metadata stored for interface - Partitions set of data splits associated with this RDD - Dependencies list of parent RDDs involved in computation - Compute function to compute partition of the RDD given the parent partitions from the Dependencies - Preferred Locations where is the best place to put computations on this partition (data locality) - Partitioner how the data is split into partitions - RDD is the main and only tool for data manipulation in Spark - Two classes of operations - Transformations - Actions Lazy computations model Transformation cause only metadata change ### DAG **Direct Acyclic Graph** – sequence of computations performed on data ## DAG **Direct Acyclic Graph** – sequence of computations performed on data Node – RDD partition ## DAG **Direct Acyclic Graph** – sequence of computations performed on data - Node RDD partition - Edge transformation on top of data **Direct Acyclic Graph** – sequence of computations performed on data - Node RDD partition - Edge transformation on top of data - Acyclic graph cannot return to the older partition **Direct Acyclic Graph** – sequence of computations performed on data - Node RDD partition - Edge transformation on top of data - Acyclic graph cannot return to the older partition - Direct transformation is an action that transitions data partition state (from A to B) ``` def printfunc (x): print 'Word "%s" occurs %d times' % (x[0], x[1]) infile = sc.textFile('hdfs://sparkdemo:8020/sparkdemo/textfiles/README.md', 4) rdd1 = infile.flatMap(lambda x: x.split()) rdd2 = rdd1.map(lambda x: (x, 1)).reduceByKey(lambda x, y: x+y) print rdd2.toDebugString() rdd2.foreach(printfunc) ``` #### **Outline** - Spark Motivation - Spark Pillars - Spark Architecture - Spark Shuffle - Spark DataFrames **Driver Node** Worker Node Worker Node Worker Node • • Driver Node Driver Worker Node Executor Executor ... #### Driver Entry point of the Spark Shell (Scala, Python, R) - Entry point of the Spark Shell (Scala, Python, R) - The place where SparkContext is created - Entry point of the Spark Shell (Scala, Python, R) - The place where SparkContext is created - Translates RDD into the execution graph - Entry point of the Spark Shell (Scala, Python, R) - The place where SparkContext is created - Translates RDD into the execution graph - Splits graph into stages - Entry point of the Spark Shell (Scala, Python, R) - The place where SparkContext is created - Translates RDD into the execution graph - Splits graph into stages - Schedules tasks and controls their execution - Entry point of the Spark Shell (Scala, Python, R) - The place where SparkContext is created - Translates RDD into the execution graph - Splits graph into stages - Schedules tasks and controls their execution - Stores metadata about all the RDDs and their partitions - Entry point of the Spark Shell (Scala, Python, R) - The place where SparkContext is created - Translates RDD into the execution graph - Splits graph into stages - Schedules tasks and controls their execution - Stores metadata about all the RDDs and their partitions - Brings up Spark WebUI with job information #### Executor Stores the data in cache in JVM heap or on HDDs #### Executor - Stores the data in cache in JVM heap or on HDDs - Reads data from external sources #### Executor - Stores the data in cache in JVM heap or on HDDs - Reads data from external sources - Writes data to external sources #### Executor - Stores the data in cache in JVM heap or on HDDs - Reads data from external sources - Writes data to external sources - Performs all the data processing ### **Executor Memory** Spark Cluster - Detailed Spark Cluster – PySpark #### Application Single instance of SparkContext that stores some data processing logic and can schedule series of jobs, sequentially or in parallel (SparkContext is thread-safe) #### Application Single instance of SparkContext that stores some data processing logic and can schedule series of jobs, sequentially or in parallel (SparkContext is thread-safe) #### Job Complete set of transformations on RDD that finishes with action or data saving, triggered by the driver application #### Stage Set of transformations that can be pipelined and executed by a single independent worker. Usually it is app the transformations between "read", "shuffle", "action", "save" #### Stage Set of transformations that can be pipelined and executed by a single independent worker. Usually it is app the transformations between "read", "shuffle", "action", "save" #### Task Execution of the stage on a single data partition. Basic unit of scheduling # Persistence in Spark | | · · · · · · · · · · · · · · · · · · · | |-----------------|---| | MEMORY_ONLY | Store RDD as deserialized Java objects in the JVM. If the RDD does not fit in memory, some partitions will not be cached and will be recomputed on the fly each time they're needed. This is the default level. | | MEMORY_AND_DISK | Store RDD as deserialized Java objects in the JVM. If the RDD does not fit in memory, store the partitions that don't fit on disk, and read them from there when they're needed. | | | | MEMORY ONLY SER Store RDD as serialized Java objects (one byte array per partition). This is generally more space-efficient than deserialized objects, especially when using a fast serializer, but more CPU-intensive to read. MEMORY AND DISK SER Similar to MEMORY ONLY SER, but spill partitions that don't fit in memory to disk instead of recomputing them on the fly each time they're needed. DISK ONLY Store the RDD partitions only on disk. Same as the levels above, but replicate each partition on two cluster nodes. MEMORY ONLY 2, DISK ONLY 2, etc. Description Persistence Level ## Persistence in Spark - Spark considers memory as a cache with LRU eviction rules - If "Disk" is involved, data is evicted to disks ``` rdd = sc.parallelize(xrange(1000)) rdd.cache().count() rdd.persist(StorageLevel.MEMORY_AND_DISK_SER).count() rdd.unpersist() ``` #### **Outline** - Spark Motivation - Spark Pillars - Spark Architecture - Spark Shuffle - Spark DataFrame # Shuffles in Spark Hash Shuffle – default prior to 1.2.0 # Shuffles in Spark - Hash Shuffle default prior to 1.2.0 - Sort Shuffle default now # Shuffles in Spark - Hash Shuffle default prior to 1.2.0 - Sort Shuffle default now - Tungsten Sort new optimized one! spark.task.cpus spark.task.cpus spark.task.cpus spark.task.cpus #### **Outline** - Spark Motivation - Spark Pillars - Spark Architecture - Spark Shuffle - Spark DataFrame #### DataFrame Idea # DataFrame Implementation #### Interface - DataFrame is an RDD with schema field names, field data types and statistics - Unified transformation interface in all languages, all the transformations are passed to JVM - Can be accessed as RDD, in this case transformed to the RDD of Row objects # **DataFrame Implementation** #### Internals - Internally it is the same RDD - Data is stored in row-columnar format, row chunk size is set by spark.sql.inMemoryColumnarStorage.batchSize - Each column in each partition stores min-max values for partition pruning - Allows better compression ratio than standard RDD - Delivers faster performance for small subsets of columns # Questions? Onesions? **Pivotal** Pivotal Confidential-Internal Use Only # Pivota **BUILT FOR THE SPEED OF BUSINESS**